Abstrak
Kemajuan teknologi medis telah memungkinkan penerapan pembelajaran mesin untuk klasifikasi penyakit, termasuk cacar monyet. Cacar monyet adalah penyakit zoonosis yang disebabkan oleh virus cacar monyet dan dapat dideteksi melalui data pasien. Penelitian ini bertujuan untuk membandingkan kinerja algoritma Support Vector Machine (SVM), k-Nearest Neighbors (KNN), dan Naïve Bayes dalam membangun model klasifikasi cacar monyet. Dataset yang digunakan terdiri dari 25.000 rekam medis pasien. Hasil penelitian menunjukkan bahwa model SVM dengan kernel linear mencapai akurasi terbaik dibandingkan dengan KNN dan Naïve Bayes. Temuan ini menunjukkan bahwa model SVM dengan kernel linear sangat efektif dalam mengklasifikasikan cacar monyet, sehingga menawarkan potensi besar untuk aplikasi medis lebih lanjut.

Kelvin Leonardi Kohsasih
Universitas Potensi Utama
- Adapala, J. S. S., Gontla, K. V. S., Koka, V., Modugula, S. L., Mothukuri, R., & Bulla, S. (2023). Breast Cancer Classification using SVM and KNN. 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), 1617–1621. https://doi.org/10.1109/ICEARS56392.2023.10085546
- Alakunle, E., Moens, U., Nchinda, G., & Okeke, M. I. (2020). Monkeypox virus in nigeria: Infection biology, epidemiology, and evolution. In Viruses (Vol. 12, Issue 11). MDPI AG. https://doi.org/10.3390/v12111257
- Altindis, M., Puca, E., & Shapo, L. (2022). Diagnosis of monkeypox virus – An overview. In Travel Medicine and Infectious Disease (Vol. 50). Elsevier Inc. https://doi.org/10.1016/j.tmaid.2022.102459
- Anugrah, W., Haerani, E., & Oktavia, L. (2024). Klasifikasi Penyakit Cacar Monyet Menggunakan Metode Support Vector Machine. Journal of Computer System and Informatics, 5(3), 558–566. https://doi.org/10.47065/josyc.v5i3.5149
- Artanti, V. (2024). Classification of Cardiovascular Diseases Using the K-Nearest Neighbors (KNN) Algorithm. IEESE International Journal of Science and Technology (IJSTE), 13(2), 12–27.
- Bagas Pattimura, Y., Paitin Kanoena, M., & Dwi Hartanto, A. (2023). Implementasi Algoritma Naïve Bayes dalam Identifikasi Citra Jenis Penyakit Cacar Dengan Image Processing. Information Technology Journal, 5(1).
- Belete, D. M., & Huchaiah, M. D. (2021). Performance Evaluation of Classification Models for HIV/AIDS Dataset. In Lecture Notes on Data Engineering and Communications Technologies (Vol. 70, pp. 109–125). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-981-16-2934-1_7
- Cichosz, P. (2015). Kernel methods. In Data Mining Algorithms (pp. 454–497). Wiley. https://doi.org/10.1002/9781118950951.ch16
- Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z. (2023). Bayesian Optimization with Support Vector Machine Model for Parkinson Disease Classification. Sensors, 23(4). https://doi.org/10.3390/s23042085
- Espejel, A. H., & Cantu-Ortiz, F. J. (2021). Data Mining Techniques to Build A Recommender System. 2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC), 217–221. https://doi.org/10.1109/ISCSIC54682.2021.00047
- Guo, W., Wang, G., Wang, C., & Wang, Y. (2023). Distribution network topology identification based on gradient boosting decision tree and attribute weighted naive Bayes. Energy Reports, 9, 727–736. https://doi.org/10.1016/j.egyr.2023.04.256
- Haque, Md. E., Ahmed, Md. R., Nila, R. S., & Islam, S. (2022). Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms. https://doi.org/https://doi.org/10.48550/arXiv.2211.15459
- Huang, Y., Mu, L., & Wang, W. (2022). Monkeypox: epidemiology, pathogenesis, treatment and prevention. In Signal Transduction and Targeted Therapy (Vol. 7, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-022-01215-4
- Kohsasih, K. L., Hayadi, B. H., Robet, Juliandy, C., Pribadi, O., & Andi. (2022). Sentiment Analysis for Financial News Using RNN-LSTM Network. 2022 4th International Conference on Cybernetics and Intelligent System, ICORIS 2022. https://doi.org/10.1109/ICORIS56080.2022.10031595
- Kohsasih, K. L., & Situmorang, Z. (2022). Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular. Jurnal Informatika, 9(1), 13–17. https://doi.org/10.31294/inf.v9i1.11931
- Leni, D., Chamim, M., Sumiati, R., & Rosa, Y. (2023). Modeling Mechanical Component Classification Using Support Vector Machine with A Radial Basis Function Kernel. JURNAL Teknik Mesin, 16(2), 165–174. http://ejournal2.pnp.ac.id/index.php/jtm
- Lonang, S., Yudhana, A., & Biddinika, M. K. (2023). Performance Analysis for Classification of Malnourished Toddlers Using K-Nearest Neighbor. Scientific Journal of Informatics, 10(3), 313. https://doi.org/10.15294/sji.v10i3.45196
- Nagavelli, U., Samanta, D., & Chakraborty, P. (2022). Machine Learning Technology-Based Heart Disease Detection Models. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/7351061
- Rabbani, S., Safitri, D., Rahmadhani, N., Sani, A. A. F., & Anam, M. K. (2023). Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 153–160. https://doi.org/10.57152/malcom.v3i2.897
- Rochim, A. F., Kusumastuti, R., & Windasari, I. P. (2021). Comparison of Feature Selection for Naive Bayes Classification Method in A Case Study of The Corona virus Lockdown. 2021 International Conference on Data Science and Its Applications (ICoDSA), 215–220. https://doi.org/10.1109/ICoDSA53588.2021.9617471
- Safitri, L. R., Chamidah, N., Saifudin, T., & Alpandi, G. T. (2019). Comparison of Kernel Support Vector Machine In Stroke Risk Classification (Case Study: IFLS data). The 1st International Conference on Global Development. https://doi.org/http://dx.doi.org/10.12962/j23546026.y2019i6.6394
- Shaban, W. M., Rabie, A. H., Saleh, A. I., & Abo-Elsoud, M. A. (2021). Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy. Pattern Recognition, 119, 108110. https://doi.org/10.1016/j.patcog.2021.108110
- Syafika, V. A. N., & Karisma, R. D. L. N. (2023). On Implementation of Support Vector Machine (SVM) in Determining the Classification of Stunting-Specific Intervention Index in Indonesia. Seminar Nasional Official Statistics, 2023(1), 267–276. https://doi.org/10.34123/semnasoffstat.v2023i1.1595
- Wang, L., Shang, J., Weng, S., Aliyari, S. R., Ji, C., Cheng, G., & Wu, A. (2023). Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. Journal of Medical Virology, 95(1). https://doi.org/10.1002/jmv.28036 World Health Organization. (2024). Multi-country outbreak of mpox. https://www.who.int/publications/m/item/multi-country-outbreak-of-mpox--external-situation-report-35--12-august-2024
Citation:
K. L. Kohsasih. "Comparison of SVM, KNN, And Naïve Bayes Algorithms in Monkeypox Disease Classification" TAMIKA, vol. 4, no. 2(Semnastik)(2024),hlm. 168-174.
Publication:
Vol. 4 No. 2(SEMNASTIK) (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi
DOI:
https://doi.org/10.46880/tamika.Vol4No2(SEMNASTIK).pp168-174
Copyright:
Copyright (c) Tamika